
The role of the Sun in long-term change in the F2
peak ionosphere: New insights from EEMD
and numerical modeling
Ingrid Cnossen1 and Christian Franzke2

1British Antarctic Survey, Cambridge, UK, 2Meteorological Institute, Center for Earth System Science and Sustainability,
University of Hamburg, Hamburg, Germany

Abstract We applied Ensemble Empirical Mode Decomposition (EEMD) for the first time to ionosonde
data to study trends in the critical frequency of the F2 peak, foF2, and its height, hmF2, from 1959 to 2005.
EEMD decomposes a time series into several quasi-cyclical components, called Intrinsic Mode Functions, and
a residual, which can be interpreted as a long-term trend. In contrast to the more commonly used linear
regression-based trend analysis, EEMD makes no assumptions on the functional form of the trend and no
separate correction for the influence of solar activity variations is needed. We also adopted a more rigorous
significance testing procedure with less restrictive underlying assumptions than the F test, which is normally
used as part of a linear regression-based trend analysis. EEMD analysis shows that trends in hmF2 and foF2
between 1959 and 2005 are mostly highly linear, but the F test tends to overestimate the significance of
trends in hmF2 and foF2 in 30% and 25% of cases, respectively. EEMD-based trends are consistently more
negative than linear regression-based trends, by 30–35% for hmF2 and about 50% for foF2. This may be due to
the different treatment of the influence of a long-term decrease in solar activity from 1959 to 2005. We
estimate the effect of this decrease in solar activity with two different data-based methods as well as using
numerical model simulations. While these estimates vary, all three methods demonstrate a larger relative
influence of the Sun on trends in foF2 than on trends in hmF2.

1. Introduction

The charged portion of the Earth’s atmosphere, the ionosphere, is mainly produced by the absorption of
extreme ultraviolet radiation from the Sun. The F2 layer is the densest part of the Earth’s ionosphere.
Long-term (multidecadal) changes in the F2 layer ionosphere have been studied extensively during the past
few decades, since the pioneering studies of Roble and Dickinson [1989], Rishbeth [1990], and Rishbeth and Roble
[1992]. They predicted that an increase in CO2 concentration causes cooling of the thermosphere, with the
subsequent atmospheric contraction leading to a lowering of ionospheric layers. Initially, observational studies
from single stations confirmed that the F2 peak height, hmF2, is indeed lowering [e.g., Bremer, 1992; Ulich
and Turunen, 1997]. However, analysis of many more stations revealed that long-term changes in hmF2 vary
considerably with location, with some stations even showing positive trends [e.g., Upadhyay and Mahajan,
1998]. In addition, significant long-term trends have been observed in the critical frequency of the F2 layer, foF2
(related to the peak electron density, NmF2, as foF2∝ √NmF2), even though global cooling and contraction is
not expected to have a significant effect on foF2 or NmF2 [Rishbeth, 1990; Rishbeth and Roble, 1992]. These
findings indicate that other processes must also contribute to long-term change in the F2 peak ionosphere.
Indeed, changes in the Earth’s main magnetic field have now been identified as an important contributor
[Elias and Ortiz de Adler, 2006; Cnossen and Richmond, 2008, 2013; Cnossen, 2014]. However, there are also other
potential contributors that could be important, such as long-term changes in solar or geomagnetic activity
or effects of climatic changes in the atmosphere below. Laštovička [2005] noted that for the F2 layer ionosphere
in particular, influences of the Sun may be important, but they have not been quantified before. Therefore,
we systematically explore the role of long-term (>11 year) variations in solar activity in causing trends in hmF2
and foF2 in some more detail here.

We will do this mainly using a data analysis technique that has not been applied to ionosonde data before. To
appreciate the benefits of this new technique, it is useful to first briefly review the most common approach
for analyzing long-term trends in ionosonde data, illustrated in Figure 1. The first step of that approach is to
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correct the time series to be analyzed for the influence of solar activity variations, which dominate ionosonde
data. This is normally done using a linear regression with a solar activity index; i.e., the observed time series is
fitted to a function of the form: prediction=a*(solar activity index) +b, with a and b coefficients to be determined
from ordinary least squares. Here we will assume the solar activity index to be F10.7. A second linear regression
on the corrected time series (= original time series� prediction from linear regressionwith F10.7) with time is done
to obtain the long-term trend. The statistical significance of the trend is normally determined with an F test.

There are a few potential weaknesses in this approach. First, when the original time series is corrected for the
influence of solar activity variations, not only the solar cycle signal is suppressed but also the influence of
any longer term changes in solar activity. This may be the reason that long-term variation of solar activity
has not been considered much as a contributing cause of long-term trends in hmF2 or foF2: it is assumed
that any effect of such variation is already removed in this step. However, it is implicitly assumed that a single
regression coefficient is appropriate for all timescales of solar activity variations. In other words, the
assumption is made that a given change in F10.7 will have the same effect on foF2 or hmF2, regardless of
whether it takes place over a few years or over several decades. This may not necessarily be a valid
assumption, and there is therefore a risk that a false signal is introduced in the corrected time series. This
would affect the long-term trend that is obtained, as well as obscure any influences of long-term solar
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Figure 1. (a) Example of the standard linear regression method applied to annual mean foF2 data from Juliusruh/Rugen
averaged over all local times. The original foF2 time series (black) and the prediction based on a linear regression with
F10.7 (red) (top). The corrected foF2 time series (= original� prediction; black) and the trend obtained from a second linear
regression with time (cyan) (bottom). (b) Same as Figure 1a but for hmF2 data from Juliusruh/Rugen.
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variability on the ionosphere. Two other potential problems with the linear regression approach are that the
trend is assumed to be linear, which may not be the case, and that the underlying assumptions of the F
test are not strictly met by the data, which could potentially make the significance determination unreliable.

The new trend analysis approach we use here circumvents these problems and also offers an opportunity to
test how much (or little) of a problem they really are. Central to this new approach is a time series analysis
technique called Ensemble Empirical Mode Decomposition (EEMD) [Huang et al., 1998; Wu and Huang, 2009].
EEMD can be applied to nonlinear and nonstationary time series and is a data-driven method which
decomposes a time series into several quasi-cyclical components, called Intrinsic Mode Functions (IMFs), and a
residual. The residual can be interpreted as a long-term trend. EEMD analysis has previously been applied
successfully to tropospheric temperature records to analyze long-term trends [Franzke, 2010, 2012]. The key
advantages of EEMD analysis are that there is no separate correction for the solar cycle needed and no a priori
assumptions are made on the functional form of the long-term trend. This may therefore be a better way of
extracting the long-term trend signal from a time series dominated by the solar cycle. We also perform a more
rigorous significance testing procedure with less restrictive underlying assumptions compared to the F test.

The aims of this study are twofold. First, we test some of the assumptions of the standard linear regression
approach, which is helpful to assess the quality of trends obtained previously with this method. We then
compare trends obtained with the linear regression-based analysis to trends obtained with EEMD analysis.
Due to the different treatment of solar influences by these two methods, this naturally provides a first clue on
the contribution of the Sun in long-term trends in hmF2 and foF2. The second aim of our study is to quantify
that contribution more precisely. We do this in two different ways based on data analysis and also offer a
third, independent estimate based on numerical model simulations.

The rest of this paper is organized as follows. Section 2 describes the data selection criteria used and initial
processing done on the data. Section 3 provides more information about the EEMD technique (3.1), the
statistical significance testing procedure (3.2), the data-basedmethods of estimating the solar contribution to
trends (3.3), and the numerical model simulations (3.4). Results are presented in section 4, starting with
testing the linearity of trends and the reliability of the F test (4.1). Section 4.2 compares the linear regression-
and EEMD-based trends, and section 4.3 presents the three different estimates of solar influences on the
trends. In section 4.4 we briefly compare trends between stations. We finish with a discussion in section 5 and
summarize our main conclusions in section 6.

2. Data

We used ionosonde data for a selected set of stations extracted from the recently published database by
Damboldt and Suessmann [2012], which gives monthly median values of foF2 and the maximum usable
frequency parameter M(3000)F2. M(3000)F2 is the ratio of the maximum usable frequency that can be used to
transmit a signal over a distance of 3000 km via reflection by the ionosphere to the critical frequency foF2.
The Shimazaki [1955] formula was used to calculate hmF2 from M(3000)F2:

hmF2 ¼ 1490
M 3000ð ÞF2� 176 (1)

Empirical formulas like these are routinely used by long-term trend analyses of hmF2, as it is a very time
consuming task to scale hmF2 directly from ionograms [e.g., Ulich and Turunen, 1997]. The Shimazaki [1955] is
the simplest of these formulas; others have been developed that add a correction term for the underlying
ionization. However, these rely on knowledge of the critical frequency of the E layer, which is not available in
the Damboldt and Suessmann [2012] database. We are therefore limited to using the Shimazaki [1955]
formula here. We must bear in mind, however, that it is possible that the use of the Shimazaki [1955] formula
can introduce some error in the hmF2 time series and therefore also possibly in the trends obtained.

The monthly median foF2 and hmF2 values were averaged over all months and local times (ignoring any
missing data points), in the same way as Bremer et al. [2012] did. This serves as a starting point for the new
trend analysis technique we are introducing here. Previous studies [e.g., Ulich and Turunen, 1997; Elias and
Ortiz de Adler, 2006] have shown that ionospheric trends do vary with season and local time. In future work,
we may consider such dependencies, but this is outside the scope of the present study.
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Our selection of stations was
based on the following
considerations. First, the time
interval should be kept the same
for all stations to eliminate
differences between trends at
different stations arising from
different periods being analyzed.
Second, this time interval should
be sufficiently long for the solar
cycle to be well established so that
it can be recognized by the EEMD
technique as such, but not so long
that only very few stations would
qualify. Also, we wanted to avoid
the recent solar minimum period
of 2008/2009, which showed
unusually low solar activity.
Including this period could skew
the results, which we considered
undesirable. Several other long-
term trend studies avoided this

period for the same reason [e.g., Emmert and Picone, 2011; Bremer et al., 2012]. Third, we allowed only up to
3 years of a time series to be missing. No missing data were allowed at the beginning or end of a time series.
Based on these criteria, we selected the interval from 1959 to 2005 (47 years). There were 21 stations with
sufficient data for foF2 and 19 stations with sufficient data for hmF2 for this interval. Their locations are listed in
Table 1. Any data gaps (at most 3 years) were filled in using linear interpolation.

3. Methods
3.1. Ensemble Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is an algorithm to decompose a time series x (t) into a finite number of
Intrinsic Mode Functions (IMFs) and a residual [Huang et al., 1998; Huang andWu, 2008]. This can be written as

x tð Þ ¼
XM

j ¼ 1
ψj tð Þ þ R tð Þ (2)

where ψj (t) is the jth IMF, M is the total number of IMFs, and R(t) is the residual. Each IMF can be written in
polar coordinates:

ψj tð Þ ¼ rj tð Þ sin θj tð Þ
� �

(3)

where rj (t) and θj (t) are the amplitude and instantaneous frequency, respectively, of the jth IMF. Note that
both the amplitude and the frequency of each IMF are time dependent; this is different from a Fourier
decomposition.

An IMF is defined by the following two properties: (1) each IMF has exactly one zero crossing between two
consecutive local extrema and (2) the local mean of each IMF is zero. To estimate the IMFs from a given
time series, the following algorithm is used: (1) Find all maxima and minima of the time series. (2) Fit a cubic
spline through all maxima andminima; these splines define the upper eup and lower elo envelopes of the time
series. (3) Calculate the mean of the upper and lower envelope

m tð Þ ¼ eup tð Þ þ elo tð Þ� �
=2 (4)

(4) Subtract m (t) from the time series; the resulting curve x (t) � m (t) is the first IMF. Then go back to 1
and repeat the procedure until x (t) � m (t) no longer satisfies the criteria of an IMF. The remainder is the
residual R (t).

Table 1. Locations of the Stations Included in Our Analysis

Station Name Latitude (deg) Longitude (deg)

Syowa Base �69.0 39.6
Mawson �67.6 62.9
Port Stanley �51.7 �57.8
Christchurch �43.6 172.8
Hobart �42.9 147.2
Canberra �35.3 149.0
Mundaring �32.0 116.2
Townsville �19.3 146.7
Okinawa 26.3 127.8
Yamagawa 31.2 130.6
Hiratsuka 35.4 139.5
Kokubunji 35.7 139.5
Ashkabad 37.9 58.3
Boulder 40.0 �105.3
Rome 41.8 12.5
Wakkanai 45.4 141.7
Juliusruh/Rugen 54.6 13.4
Moscow 55.5 37.3
Tomsk 56.5 84.9
Leningrad 60.0 30.7
Sodankylä 67.4 26.6
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In practice, the algorithm has to be refined by a so-called “sifting” process, which amounts to iterating steps 1–3
until a zeromean of the IMF has been realized to some stopping criterion [Huang et al., 1998; Rilling et al., 2003].
Once this has been achieved, the effective IMF has been determined. The residual that remains when all
IMFs have been extracted this way can be interpreted as the instantaneous mean of the time series. The
instantaneous mean can be a constant, a smooth monotonic function, or a smooth function with at most one
extremum [Huang and Wu, 2008]. When the instantaneous mean is not constant, we refer to it as a trend.

A drawback of EMD analysis is that mode mixing can occur. This is defined as either a single IMF consisting of
signals of widely disparate scales or a signal of similar scale residing in different IMF components. To suppress
this problem, a variation on the original EMD technique, called Ensemble Empirical Mode Decomposition
(EEMD), was introduced byWu and Huang [2009]. In EEMD analysis, an ensemble is created by adding different
white noise to the original time series before the sifting process. The original EMD algorithm is then applied to
each ensemble member, and the ensemble means are treated as the final result. The rationale behind this
is that only the true components of the time series will survive and persist in the final ensemble mean. Here we
therefore used EEMD analysis.
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Figure 2. (first row) The original F10.7 time series, (second to fifth rows) its IMFs, and (sixth row) the residual obtained with
four different combinations of EEMD parameter settings; “n” is the number of ensembles and “s” the fraction of the
standard deviation used as noise. Note that the EEMD analysis indicates a long-term decrease in solar activity.
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The amplitude of the white noise to be added to the original time series needs to be finite, but not infinitesimal,
so that the ensemble is forced to exhaust all possible solutions [Huang and Wu, 2008;Wu and Huang, 2009]. We
experimented with different amplitudes of white noise, as well as different numbers of ensemble members,
when applying EEMD to the F10.7 time series. Some examples are shown in Figure 2. The second IMF appears to
capture the 11 year solar cycle signal quite well, but for a high level of noise (0.75 times the standard deviation)
some of this signal ends up partly in the third IMF. We consider it more desirable for the solar cycle signature to
be associated with a single IMF and therefore eliminated this high noise level. When a low noise level of 0.25
times the standard deviation was used, we found that the result was relatively more sensitive to the number of
ensemble members used (not shown) than at a noise level of 0.5 times the standard deviation. We therefore
chose a noise level of 0.5 times the standard deviation. Also, at this noise level the residual in particular does
depend somewhat on the number of ensemblemembers used, but the residual with 100members does not look
unreasonable compared to the other cases explored. In the interest of computational efficiency we therefore
used 100 ensemble members for all further analyses. An example of the EEMD analysis with these settings
applied to foF2 data from Juliusruh/Rugen is shown in Figure 3. Also here, the second IMF clearly corresponds to
the solar cycle signal.

3.2. Significance Testing

The significance of the trends obtained with the EEMD analysis was tested against two statistical null models.
These null models were designed to share certain characteristics with the data, but they do not contain a
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Figure 3. Example of the EEMD analysis applied to foF2 data from Juliusruh/Rugen (same data as used in Figure 1a).
(first row) The original foF2 time series, (second to fifth rows) its IMFs, and (sixth row) the residual are shown. Figure 3
(sixth row) also indicates the 5–95% percentile ranges for both statistical null models: red, phase scrambling; cyan, AR
process. In the example shown the residual (the trend) is just significant against the phase scrambling null model, but
not against the AR null model.

Journal of Geophysical Research: Space Physics 10.1002/2014JA020048

CNOSSEN AND FRANZKE ©2014. American Geophysical Union. All Rights Reserved. 8615



long-term trend by construction. They serve to define a distribution of trends that could reasonably be
obtained from a time series with similar properties as the original data but containing no “true” trend. This
allows us to gauge how likely it is that the trends obtained from the original data could have been produced
by noise or stochastic processes, rather than indicating a significant, deterministic trend.

The first statistical null model makes use of phase scrambling [Theiler et al., 1992; Franzke, 2012] to generate a
time series with the same autocorrelation function and same probability density function as the original time
series. This method first performs a Fourier transformation of the data. The autocorrelation function is
uniquely defined by the amplitudes of the Fourier modes. To generate surrogate data, each complex Fourier
amplitude is multiplied by eiφ, where φ is independently chosen from a uniform distribution U(0, 2π) for
each frequency. Thus, the resulting time series is the sum of randomly phased Fourier components whose
amplitudes satisfy the condition that the power spectrum of that time series is identical to the power
spectrum of the original data time series (see Theiler et al. [1992] for more details).

The second statistical null model is a cyclic autoregressive (AR(1)) process [Franzke, 2013]. A cyclic AR(1)
process is given by

xtþ1 ¼ μ Tð Þ þ α Tð Þxt þ σ Tð Þεt (5)

where μ(T) is in our case the periodic mean solar cycle, α(T) is the periodic autoregressive parameter, σ(T) the
periodic standard deviation, εt is a normally distributed white noise variable, and T is the year. The parameters
of the cyclic AR(1) model are estimated from the original time series by solving the periodic Yule-Walker
equations for each T [Franzke, 2013].

For both statistical models we generated 100 realizations, which were subjected to the same trend analysis
procedures as the original time series. If the trend obtained from the original data was outside the 5–95%
percentile range of the synthetic trend distribution at any point, we considered it significant (see example in
Figure 3). The same significance testing procedure was also applied to trends obtained with the linear
regression approach to test the performance of the F test.

3.3. Data-Based Estimates of the Solar Contribution to Trends

There are a number of different ways to try and quantify the influence of long-term solar variability on trends
in hmF2 and foF2. Here we explore three different approaches, two of which are data based.

First, we employ a different correction for solar influences in the first step of the linear regression-based
trend analysis. We noted already that the second IMF captures the solar cycle signal quite well, which is the
dominant influence on hmF2 and foF2. Therefore, we can use, instead of the original F10.7 time series,
only the second IMF to correct the hmF2 and foF2 data to be analyzed. This way, the influence of the long-
term decrease in solar activity should be retained. The difference between the trends obtained with this
modified version of the linear regression-based trend analysis and the trends obtained with the standard
linear regression analysis gives a first estimate of the contribution of long-term solar variation to trends in
hmF2 and foF2.

Second, we estimate the influence of the long-term trend in solar activity by taking the linear fit of the
residual of the F10.7 time series to obtain a trend in solar flux unit (sfu)/yr and multiplying this by a coefficient
that describes the dependence of hmF2 or foF2, respectively, on F10.7. The linear fit is justified here because the
F10.7 residual is quite well described by a straight line. The coefficient we use to multiply with is the linear
regression coefficient between the F10.7 time series on the one hand and the hmF2 and foF2 time series for each
station on the other. This is not ideal, because hmF2 and foF2 may respond differently to variations in F10.7
on different time scales, as noted in the introduction. However, a better alternative is not readily available and it
should still provide a useful additional estimate for comparison with our other estimates.

3.4. Numerical Model Simulations

Besides the data-based estimates of the contribution of long-term change in solar activity to trends in hmF2
and foF2, we use two simulations with the thermosphere-ionosphere-electrodynamics general circulation
model (TIE-GCM). The TIE-GCM is a time-dependent, three-dimensional model that solves the fully coupled,
nonlinear, hydrodynamic, thermodynamic, and continuity equations of the thermospheric neutral gas
self-consistently with the ion continuity equations. In the setup used here, the model grid consists of
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36 latitude and 72 longitude points (5° × 5° resolution) and 29 pressure levels between ~96 km and ~500 km
with a spacing of half a scale height. Information about the solar and geomagnetic activity levels is
required as input; this can be specified through the F10.7 index and the Kp index, respectively. The TIE-GCM
is well established and has been widely used in the thermosphere-ionosphere community. We will
therefore not give a full description here; more information can be found in Roble et al. [1988], Richmond
et al. [1992], and Qian et al. [2014]. Qian et al. [2014] showed that the peak electron density in the F2 layer,
NmF2, simulated by the TIE-GCM is generally consistent with observations. Simulated electron density
profiles at Millstone Hill also agree well with observations. This gives confidence that the TIE-GCM is a
suitable model to use for our purposes.

The simulations used here were run from 1 March to 30 April, with prescribed solar activity levels. In one
simulation F10.7 was set constant at 130 sfu; in the other it was set constant at 110 sfu. These levels correspond
roughly to the solar activity at the start and end points of the interval we study here (see Figure 2). We
estimated the effect of such a change in solar activity level on hmF2 and foF2 by averaging over all local
times and taking the mean difference between the simulations over all days (61 in total). At each grid point,
a t test was done to assess the statistical significance of the 61 day mean differences between the two
simulations against day-to-day variability, represented by the standard deviation of the 61 values at that
grid point. We used observed levels of geomagnetic activity (via the Kp index; here taken from 1 March to
30 April in 2008) to help achieve a realistic day-to-day variability. This is analogous to the procedure
followed by Cnossen [2014]. The contribution of the long-term trend in F10.7 to trends in hmF2 and foF2 was
estimated by dividing the 61 day mean differences by 47 (the number of years in our interval) at the grid
points nearest to the stations selected for our analysis.

We note that by running the simulations only for equinox conditions rather than for a full year, the
estimates obtained are not exactly comparable to the observed trends, which include data from
the whole year. However, the simulation results still offer a useful guideline to the approximate effect of
the long-term change in solar activity, independent of the ionosonde data on which our other estimates
are based.

Table 2. Trends in hmF2 (m/yr) Obtained With EEMD Analysis and Linear Regression Analysis and Their Significancea

Station Name

Trend (m/yr) Significance Linearity Trend (m/yr) Significance

EEMD ph-scr AR R2 Linear Regression F Test ph-scr AR

Mawson 152.3 0.23 490.2 ✓ ✓ ✓

Port Stanley �790.6 ✓ ✓ 0.98 �471.8 ✓ ✓ ✓

Christchurch �177.0 ✓ 0.44 321.9 ✓

Hobart �347.2 0.86 27.9
Canberra �82.8 0.11 17.2
Mundaring 251.9 ✓ ✓ 0.19 235.4 ✓

Townsville �161.5 0.99 �26.9
Okinawa 80.4 0.31 146.2
Hiratsuka �911.1 ✓ ✓ 0.99 �481.7 ✓ ✓ ✓

Kokubunji �645.4 ✓ ✓ 1.00 �304.4 ✓ ✓ ✓

Ashkabad 1.6 �0.02 265.0
Boulder �666.1 ✓ ✓ 0.94 �469.0 ✓ ✓ ✓

Rome �831.8 ✓ ✓ 0.92 �651.6 ✓ ✓ ✓

Wakkanai �237.5 0.75 �310.6 ✓ ✓ ✓

Juliusruh/Rugen �523.3 ✓ ✓ 0.95 �345.1 ✓ ✓ ✓

Moscow �419.6 0.63 334.5 ✓

Tomsk �455.9 0.98 �414.8 ✓

Leningrad �399.2 ✓ 0.87 �108.7
Sodankylä �410.7 ✓ 0.84 �397.6 ✓ ✓ ✓

aTrends that are significant against at least one of the statistical null models (ph-scr = phase scrambling; AR= cyclical AR
process) are printed in bold. We also indicate that a trend is significant against the phase scrambling null model (columns 3
and 8), against the AR null model (columns 4 and 9), or according to the F test (column 7) using a tick mark (✓); nothing is
printed in these columns if the trend is not significant. The linearity of the EEMD-derived trends is expressed by the
adjusted R2 value of a linear fit to those trends. The EEMD trend value at each station is the regression coefficient of that
linear fit, used here as a measure of the magnitude of the trend.
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4. Results
4.1. Testing the Linear Regression Approach

One of the potential problems with the linear regression-based trend analysis approach is that it assumes
that trends are linear over the time period considered. The EEMD method does not make this assumption.
Instead, it allows us to quantify the linearity of the trends obtained with this method afterward by fitting
straight lines to them. The adjusted R2 value of the fit indicates the proportion of the trend that can be
explained by that straight line. We use this as a measure of linearity.

Column 5 of Tables 2 and 3 shows the adjusted R2 values for the straight-line fits to the EEMD-derived trends in
hmF2 and foF2, respectively. Of the trends in hmF2 that are significant against at least one of the statistical null
models (10 in total), most are highly linear. The two exceptions are Christchurch (R2 = 0.44) and Mundaring
(R2 = 0.19). However, examination of the hmF2 time series for Mundaring shows that there is an unusually
low value for 1959, and because this happens to be the start point of our analysis, this has a rather large
influence, making the overall trend significant and nonlinear. We tested whether the EEMD-based trend
for Mundaring was still significantly positive when analyzing the period of 1960 to 2005 instead and
found that this was not the case. Therefore, only the hmF2 trend for Christchurch appears to be reliably
nonlinear. All of the trends in foF2 that are significant against at least one of the statistical null models (12 in total)
can be considered highly linear. The lowest R2 value here is 0.79 for Ashkabad, and this result may in
fact not be very reliable. The low R2 for Ashkabad is mostly associated with unusually high foF2 values
between 1995 and 2005; nearly all of the trend is associated with this last decade, with hardly any change
before 1995. We have some doubts over whether this trend is real. In general, the assumption of a linear
trend therefore seems a reasonable one to make and should not introduce much error.

A second possible weakness of the linear regression approach is that the F test may not be entirely reliable,
because its underlying assumptions are not strictly met by the data. To gauge how well the F test determines
the statistical significance of trends obtained with the linear regression method, we compare the results of

Table 3. Trends in foF2 (kHz/yr) Obtained With EEMD Analysis and Linear Regression Analysis and Their Significancea

Station Name

Trend (kHz/yr) Significance Linearity Trend (kHz/yr) Significance

EEMD ph-scr AR R2 Linear Regression F Test ph-scr AR

Syowa Base �45.5 ✓ 1.00 �26.4 ✓ ✓ ✓

Mawson �32.6 ✓ ✓ 0.88 �19.6 ✓ ✓ ✓

Port Stanley �17.6 1.00 �8.2 ✓ ✓ ✓

Christchurch �11.8 ✓ 1.00 �1.7
Hobart �7.0 1.00 �4.8 ✓

Canberra �9.6 1.00 �5.0 ✓

Mundaring �0.9 0.41 1.0
Townsville �7.0 0.48 4.4
Okinawa �26.9 ✓ 0.96 �15.9 ✓ ✓ ✓

Yamagawa �11.1 0.98 3.4
Hiratsuka �13.0 0.92 �6.0 ✓ ✓

Kokubunji �23.4 ✓ ✓ 0.94 �9.3 ✓ ✓ ✓

Ashkabad 44.2 ✓ 0.79 39.6 ✓

Boulder 9.2 0.90 2.2
Rome �13.5 ✓ 0.96 �4.4 ✓ ✓

Wakkanai �17.5 ✓ 0.97 �5.0 ✓

Juliusruh/Rugen �17.3 ✓ 1.00 �7.7 ✓ ✓

Moscow �12.2 0.94 �5.7 ✓

Tomsk �25.9 ✓ 1.00 �20.8 ✓ ✓ ✓

Leningrad �21.6 ✓ ✓ 0.99 �10.4 ✓ ✓ ✓

Sodankylä �22.3 ✓ 0.95 �14.1 ✓ ✓ ✓

aTrends that are significant against at least one of the statistical null models (ph-scr = phase scrambling; AR= cyclical AR
process) are printed in bold. We also indicate that a trend is significant against the phase scrambling null model (columns3
and 8), against the AR null model (columns 4 and 9), or according to the F test (column 7) using a tick mark (✓); nothing is
printed in these columns if the trend is not significant. The linearity of the EEMD-derived trends is expressed by the
adjusted R2 value of a linear fit to those trends. The EEMD trend value at each station is the regression coefficient of that
linear fit, used here as a measure of the magnitude of the trend.
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the F test (column 7 of Tables 2 and 3) with significance against the phase scrambling and AR process null
models (columns 8 and 9 of Tables 2 and 3). For hmF2, all trends that are significant against the phase
scrambling and AR null models (nine in total) are also significant according to the F test. However, the F test
reports in addition four trends as statistically significant which are not significant against either of the two
statistical null models. For foF2 all but one of the trends that are significant against at least one of the
statistical null models (12 in total) are also significant according to the F test, Moscow being the exception.
However, also in this case the F test reports four additional trends as statistically significant which are not
significant against either of the two statistical null models.

4.2. Linear Regression Versus EEMD

So far we have not yet considered the magnitudes of the trends obtained. For trends obtained with the
EEMD method there are different ways to define their magnitude. Given that most of the trends we
obtained are highly linear, we have chosen here to use the slope of the straight-line fits mentioned earlier.
These values, in m/yr for hmF2 and kHz/yr for foF2, are shown in column 2 of Tables 2 and 3. Trends obtained
with the linear regression approach (in the same units) are shown in column 6. Figures 4 and 5 compare
trends obtained with these different methods visually.

For both hmF2 and foF2 the EEMD-derived trends are noticeably more negative than those obtained with the
standard linear regression method. This is the case for all of the trends that are significant against at least one
of the statistical null models for both methods. Those trends are on average about 235m/yr (hmF2) and
11 kHz/yr (foF2) more negative for the EEMD analysis than they are for the linear regression analysis. These
differences in trend magnitude between the two methods correspond to about 30–35% and almost 50% of
the EEMD-derived trends in hmF2 and foF2, respectively.

A possible explanation for the differences between the linear regression-based and EEMD-based trendsmay be
found in the different treatment of solar influences. The linear regression method may result in less negative
trends because the effect of the long-term decrease in solar activity (see Figure 2) has been corrected for before
the final trend detection step, while any such influence is retained in the EEMD-derived trends. In the next
section, we try to quantify the solar influence in several different ways.

4.3. Estimates of the Solar Contribution to Trends in hmF2 and foF2

Our first estimate of the influence of the long-term trend in solar activity relies on a modification to the
standard linear regression approach. As the second IMF captures the 11 year solar cycle signal quite well, we
used, instead of the full F10.7 time series, only its second IMF to correct the foF2 and hmF2 time series. Any
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Figure 4. Trends in hmF2 (m/yr) obtained with the EEMD method (black), the standard linear regression method (red), and a modified linear regression method,
where only IMF2 of the F10.7 time series was used to correct for solar influences rather than the original F10.7 time series (green; further discussed in section 4.3).
Solid bars indicate trends that are significant against at least one of the statistical null models; open bars indicate nonsignificant trends.
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influence of the long-term trend in solar activity should therefore now be retained. The trends obtained with
this modified linear regression technique were already shown in Figures 4 and 5.

As expected, given the negative trend in F10.7, the trends in both foF2 and hmF2 are consistently more negative
compared to those obtained with the standard linear regression approach. However, for hmF2 the difference
between the two linear regression-based trends is only about 20–30m/yr. Considering just significant trends, this
tends to correspond to about 5–10% of the total trends in hmF2, so it is a relatively small difference. The
differences in trends in foF2 obtained with the two linear regressionmethods vary from<1kHz/yr to>2.5 kHz/yr
difference. This corresponds to anywhere between a few percent up to 20–30% of the total trends that are
significant. The trends obtained with the modified version of the linear regression approach are still for the most
part considerably more positive than the EEMD-derived trends.

A second way of estimating the influence of the long-term decrease in solar activity is through a multiplication
of the straight-line fit of the F10.7 residual, giving a trend in sfu/year, with the linear regression coefficient of
the F10.7 time series with the hmF2 and foF2 time series for each station. Estimates obtained this way are shown in
Figures 6 and 7. On average, the contribution of the long-term decrease in solar activity to the trends in hmF2
and foF2 estimated this way is about �220m/yr and about �12 kHz/yr, respectively. When only significant
trends are considered, this corresponds to about 30–35% of the EEMD-derived trends for hmF2 and about 50%

-50.0

-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

50.0

EEMD trend Linear regression trend Modified linear regression trend (solar cycle correction based on F10.7 IMF2 only)

Figure 5. Trends in foF2 (kHz/yr) obtained with the EEMD method (black), the standard linear regression method (red), and a modified linear regression method,
where only IMF2 of the F10.7 time series was used to correct for solar influences rather than the original F10.7 time series (green; further discussed in section 4.3).
Solid bars indicate trends that are significant against at least one of the statistical null models; open bars indicate nonsignificant trends.

150

250

350

250

150

50

50

850

750

650

550

450

950
EEMD trend solar contribution estimated from F10.7 residual multiplied by lin.reg.coeff. solar contribution estimated from TIE  GCM simulations

Figure 6. Trends in hmF2 (m/yr) obtained with the EEMDmethod (black) and estimates of the solar contribution to these trends based onmultiplying the linear fit to the
trend in F10.7 with the linear regression coefficient between the F10.7 and hmF2 time series (red) or on the basis of TIE-GCM simulations (green). For the EEMD trends
(black) and the solar contribution estimated from the TIE-GCM simulations (green), solid bars indicate trends that are significant against at least one of the statistical
null models or according to a t test, respectively, while open bars indicate nonsignificant trends. For the estimates of the solar contribution based on the trend in F10.7
multiplied by the linear regression coefficient (red) we did not determine the statistical significance. Instead, bars are solid when the corresponding EEMD trend is
significant against at least one of the statistical null models and open when it is not.
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for foF2. This estimate is considerably higher than the estimate obtained with the modified linear regression
method. Interestingly, the new, higher estimate of the contribution of the long-term trend in solar activity
corresponds very closely to the differences found between the trends obtained with the EEMD and linear
regression analyses in section 4.2, both for hmF2 and foF2.

A third way to estimate the influence of the change in solar activity is given on the basis of simulations with the
TIE-GCM and is also shown in Figures 6 and 7. In general, this method estimates the solar contribution as
somewhat higher still than the previous method: on average, the estimated contribution to trends in hmF2 and
foF2 is about �270m/yr (~40% of the total EEMD-based trends) and about �19 kHz/yr (~80% of the total
EEMD-based trends), respectively.

4.4. Comparisons Between Stations

Almost all of the trends in foF2 that are significant are negative. The only exception is the trend in foF2 for
Ashkabad, which we consider to be not very reliable, as discussed in section 4.1. The largest significant trends
in foF2 are those for Syowa Base and Mawson, both high-latitude stations in the Southern Hemisphere.
However, the number of significant trends is not sufficient to deduce reliably any systematic dependence on
latitude. Trends at Okinawa and Kokubunji, both at relatively low latitudes, are of similar order of magnitude
to those at higher latitude stations, such as Tomsk, Leningrad, and Sodankylä.

Trends in hmF2 are also nearly all negative. The only exceptions here are Mawson and Mundaring. We
already discussed in section 4.1 that the trend for Mundaring is highly sensitive to inclusion/exclusion of
the year 1959 and will therefore not discuss this further. The hmF2 time series for Mawson does not indicate
any obvious problem, although there are considerable fluctuations from year to year. Also, the fact that
only the linear regression analysis methods gives a significant trend means that there is some uncertainty
as to whether this trend is real. If it is real, the difference with trends at the other stations is most likely
due to its specific location. For instance, as a high-latitude station, Mawson may experience a different
response to long-term changes in geomagnetic activity. Having said that, high-latitude stations in the Northern
Hemisphere, such as Sodankylä and Leningrad, still show negative trends in hmF2, although these are
somewhat weaker than significant negative trends found at midlatitude stations.

Only hmF2 for Christchurch appears to have a reliable nonlinear trend. The reason for this nonlinear trend
compared to the highly linear trends found at most other stations is not clear. Two nearby stations, Canberra
and Hobart, did not show a significant trend, and therefore, one may question whether the trend at
Christchurch can be trusted. On the other hand, some drivers of long-term change (for instance, changes in
the Earth’s magnetic field) vary strongly with location and may show nonlinear changes in some, but not
necessarily all, locations over the time period considered. The trend in hmF2 found at Christchurch could be
indicative of such a (locally) nonlinear driver, but this would need further investigation to confirm.
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Figure 7. Trends in foF2 (kHz/yr) obtained with the EEMDmethod (black) and estimates of the solar contribution to these trends based onmultiplying the linear fit to
the trend in F10.7 with the linear regression coefficient between the F10.7 and foF2 time series (red) and on the basis of TIE-GCM simulations (green). For the EEMD trends
(black) and the solar contribution estimated from the TIE-GCM simulations (green), solid bars indicate trends that are significant against at least one of the statistical
null models or according to a t test, respectively, while open bars indicate nonsignificant trends. For the estimates of the solar contribution based on the trend in F10.7
multiplied by the linear regression coefficients (red) we did not determine the statistical significance. Instead, bars are solid when the corresponding EEMD trend is
significant against at least one of the statistical null models and open when it is not.
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5. Discussion

We applied EEMD analysis for the first time to ionosonde data to extract long-term trends in hmF2 and foF2.
We did this both to test some of the assumptions made by the more commonly used linear regression-
based trend analysis and to reveal new information about the role of the Sun in long-term trends in
hmF2 and foF2.

Since EEMD analysis does not make any assumptions on the functional form of a trend, it was possible to
quantify the linearity of the trends obtained afterward. This demonstrated that for most stations, trends in hmF2
and foF2 are highly linear. In general, the assumption of linearity made by the linear regression-based trend
analysis approach is therefore reasonable, at least for the interval studied here (1959–2005). However, there are
exceptions for some stations, and this should be kept in mind.

We also tested the reliability of the F test, generally used to test for statistical significance as part of a linear
regression-based trend analysis. Compared to the significance testing procedure adopted here, the F test
tends to overestimate the statistical significance of trends; i.e., it reports some trends as significant that are
not significant against either of the statistical null models we used. This occurred for about 25% of cases
where the F test found a significant trend for foF2 and about 30% of such cases for hmF2. This means that some
of the trends reported in the literature as statistically significant based on the F test may not pass a harder
test for statistical significance. Any such trends should be viewed with caution as they may not be reliably
significant. In future work, it would be advisable to adopt a significance testing procedure as we have done
here to avoid reporting questionable trends as significant [Franzke, 2012].

Comparing the trends obtained with linear regression and with EEMD analysis, we found that the latter
were consistently more negative, by about 30–35% for hmF2 and almost 50% for foF2. We explored
whether this difference arises because the EEMD-based trends include the effect of a long-term decrease
in solar activity, while this effect is removed from the trend obtained by linear regression. We estimated
the effect of the long-term decrease in solar activity in three different ways, which gave considerably
different results.

Interestingly, a multiplication of the EEMD-based trend in F10.7 with the linear regression coefficient between
the F10.7 time series and the hmF2 and foF2 time series for each station estimated the solar contribution
at about 30–35% of the total EEMD-based trends in hmF2 and at about 50% of the total EEMD-based trends
in foF2. If this estimate is correct, the difference between the linear regression-based and EEMD-based
trends could be entirely explained by the suggestion above, namely, that the linear regression-based
analysis removes the influence of the long-term decrease in solar activity successfully, while this influence
is retained by the EEMD analysis. On the other hand, it would also mean that the model simulations,
which predicted a slightly larger solar contribution, overestimated the influence of the Sun, while our
other data-based estimate of the solar contribution is too low. It is not entirely clear yet whether this is the
correct interpretation.

All three estimates agree that the influence of the Sun is relatively more important for foF2 than for hmF2.
This fits in with hmF2 also being influenced by the increase in greenhouse gases, while this should not have a
significant influence on foF2 [Rishbeth, 1990; Rishbeth and Roble, 1992; Cnossen, 2014]. In relative terms,
influences of other processes, such as long-term changes in solar activity, would therefore be expected to be
more important for foF2 than for hmF2.

6. Conclusions

Our main conclusions can be summarized as follows:

1. EEMD analysis shows that trends in hmF2 and foF2 between 1959 and 2005 are in most cases highly linear.
The assumption of a linear trend, often made by the linear regression-based trend analysis method, is
therefore mostly a reasonable one.

2. The F test, generally used to test for statistical significance as part of a linear regression-based trend
analysis, tends to overestimate statistical significance. Any published trends that were reported as
significant based on this test should therefore be treated with caution. For future studies we recommend
adopting a more rigorous significance testing procedure, such as we have done here.
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3. Based on three different methods, we estimate that the trend in solar activity between 1959 and
2005 can explain between 5–10% and 35–40% of the total EEMD-based trends in hmF2 while this is
estimated to be between 20–30% and up to as much as 80% for EEMD-based trends in foF2. All three
methods indicate that the influence of the Sun is relatively more important for long-term trends in foF2
than for trends in hmF2.
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