Thomas Damboldt Peter Suessmann

Consolidated Database of Worldwide Measured Monthly Medians of Ionospheric Characteristics foF2 and M(3000)F2

Consolidated Database of Worldwide Measured Monthly Medians of Ionospheric Characteristics foF2 and M(3000)F2

Summary

Ionospheric foF2 and M(3000)F2 data were collected from various sources in order to create a consolidated new database. As the data was in different and in some cases confusing formats, it was checked, corrected where possible, and converted into a simple format with an individual self explaining header for each station.

Introduction

The database was created with the aim to check the data predicted by ionospheric models with actually measured ionospheric values. In particular it was considered useful to check if the measured data showed any long-term trend in contrast to the ITU-model which is static in long-term.

1. Identification of possible sources and their availability

From our contacts with the Kuehlungsborn Ionosonde people, we knew that Juergen Bremer's work (Trends in the ionospheric E and F regions over Europe, Ann. Geophysicae, 16, 986-996, 1998) was based on the data he obtained from the World Data Center Boulder on their two CDs. Bremer tediously updated and modified this data which is originally in the URSI code (see below). This data set from Bremer was our starting point for the present work.

Ionospheric data and in particular the parameters foF2 and M(3000)F2 derived from ionosonde measurements can be found in the World Data Centres. The World Data Center (WDC) system was originally created to archive and distribute data collected from the observational programs of the 1957 -1958 International Geophysical Year (IGY). The WDC system now includes 52 centres in 12 countries and is the home for all kinds of geophysical data. The WDCs are funded and maintained by their host countries on behalf of the international science community.

The WDC System can be accessed from their home page: <u>http://www.ngdc.noaa.gov/wdc/wdcmain.html</u>

There is one WDC for Ionosphere:

World Data Center for Ionosphere, Japan <u>http://wdc-c2.nict.go.jp/index_eng.html</u>

And there are four WDCs on Solar-terrestrial Physics, all of them hold ionospheric data:

- World Data Center (WDC) for Solar-Terrestrial Physics, Chilton, UK http://www.ukssdc.rl.ac.uk/wdcc1/iono_menu.html
- World Data Center for Solar-Terrestrial Physics, Moscow <u>http://www.wdcb.ru/stp/index.en.html</u>

- World Data Center A for Solar-Terrestrial Physics, Environmental data Service NOAA, Boulder, USA <u>http://www.ngdc.noaa.gov/wdc/wdcmain.html</u>
- WDC for Solar-Terrestrial Science, Sydney, Australia <u>http://www.ips.gov.au/World_Data_Centre</u>

Ionospheric data is also available from the Space Physics Interactive Data Resource (SPIDR) operated by the National Geophsical Data Center (NGDC) in Boulder, USA: http://spidr.ngdc.noaa.gov/spidr/

In fact, there are more ionosonde data in SPIDR than in the beforementioned WDCs. Finally, of course, there was the possibility to contact the organizations running the ionosondes and try to get their data directly.

As far as we could find out, all data from the internet sources are free, data from the ionosonde stations are mainly available free on an exchange basis. For some gaps in the data material there may be raw data (films, prints) with ionograms which need to be scaled. Although this may be possible in some cases, it is probably connected with high cost and this possibility was not taken into account for this database.

2. Gather data from as many ionosondes as possible.

For this task the above mentioned internet sites were checked and a number of organisations and individuals were contacted who either hold some of the required data or who have knowledge about the required data and their format.

The ionospheric data from the WDCs was downloaded which was quite a big task, as some sites did not allow to bulk-download the required data, other WDCs had very long loading times and others did not provide the monthly medians but only the daily values. Although the WDCs should mirror each other it was found that the data sets were far from being identical. The periods with measurements were different and even the data for the same station differed in some cases.

The WDC system is a bit unsatisfactory for the reasons mentioned above (data of the same stations not identical at the different sites). Moreover the websites very often contain outdated information, obsolete addresses etc.

A closer look at the data from the various sources yielded their incompatibility in so far as the time stamp on the measurements was either local time or UT or in some cases it was wrongly stamped, in other cases the stamp changed within the data record. We only learnt in the course of this work that the URSI code allows this change of time but this meant more effort in the work of combining and assembling the data into one simple format.

It is obvious that these discrepancies in the data are difficult to find but it is also obvious that they must be found in order for the data to be of the best possible use for further investigations. A smaller problem was that some data was in 10 x MHz, others in 100 x MHz (similarly for M(3000)F2) and there were very large gaps in the data.

In the following tables, examples of the data as downloaded from the various sources are listed in order to show the different formats:

Table 1 shows an example of data obtained from **Bremer.** There are foF2-values for 106 stations and M(3000)F2-data for 98 stations. Some of the data are in UT and some are in local time. There are two files, one for each parameter. Some of the M(3000)F2-values are with one decimal, some are with two decimals.

Table 2 shows an example as downloaded from the **World Data Center Chilton**. There are foF2-values for 189 stations and M(3000)F2-data for 167 stations. Some of the data are in UT some are in local time. There are two files, one for each parameter.

Table 3 shows an example of the data as downloaded from the **World Data Center Sydney**. There are foF2-values for 214 stations and M(3000)F2-data for 199 stations. Some of the data are in UT some are in local time. There are two files, one for each parameter.

Table 4 gives an example of the Okinawa data as downloaded from **World Data Center Tokyo**. There are foF2- and M(3000)F2-values for 8 stations . For each year there is one file which contains only the daily hourly values and the medians had to be calculated here. For the purpose of the present work it was assumed that measurements performed at least 10 days per month are sufficient to calculate a monthly median value.

Table 5 shows an example of the data as obtained from the ionosonde **Juliusruh** which is in the URSI format. This method described in INAG Bulletin No. 62 in 1998 is now widely used by ionosonde stations. Each SAO text file contains the scaled data for one station and one month including most of the important characteristics as well as the vertical electron density profile (where available). Because of all the details contained, these are large files.

Table 6 shows an example of the data as obtained from the Rome site. Some of the data are in UT and some are in local time.. There is only foF2 data and one file for each year.

Table 7 shows the data as obtained from Roberto Foppiano for Concepcion. There are foF2 and M(3000)F2 data and one file for each year. Information about the date and parameter stored is in the filename.

Table 8 shows the data as obtained from the Space Physics Interactive Data Resource (SPIDR)-website. Although the SPIDR website states the possibility of bulk-downloading the data, this is not possible due to a programming error. Download of the required data not available in the before-mentioned sources was therefore very tedious and time consuming. Because of this huge workload, only those data were downloaded which was not already obtained from one of the WDC's. At least for some of the newer data in SPIDR there are no monthly medians available but only the scaled values of ionosonde measurements which were in some cases taken in 5-minute intervals. In those cases where there are more than one measurement within an hour the measurement which is closest to the full hour was taken into account here. The monthly medians were again (as for the data of WDC Tokyo) calculated only for those months where there were more than 10 days with measurements for the relevant hour. "Descriptive letters" as mentioned in the "URSI Ionogram Interpretation Handbook" were not taken into account. There is a very small chance that this procedure introduces a small bias. If this bias proves to be of importance, the numbers can be easily recalculated taking into account either a different minimum number of days or taking into account the descriptive letters or both.

The different structure of the data from the different sources is obvious. Consequently there was no other way than to extract the required data and to totally reformat it. This had to be done individually for each data set by viewing the data and rearranging and/or extracting the wanted data. This task was performed by writing different software routines for each data set.

Table 9 shows an example of the proposed structure of the new data set containing only monthly medians of foF2 or M(3000)F2. The first two lines show the station name, URSI-code, geographical coordinates, parameter displayed (foF2 or M(3000)F2) and the source of the data. The first two columns show month and year and the following columns display the data in 24 hour format (00 to 23 UT). The letter C indicates "no data".

Table 10 shows the complete list of ionosonde stations which could be found in the abovementioned sources together with the dates of available foF2 and M(3000)F2 data. Unfortunately there are gaps in the data which are not visible in this list. Figure 1 shows the geographical distribution of these stations.

Table 11 shows the number of monthly medians available for each ionosonde station in the various sources. The final column shows the number of monthly medians if the data from all sources is combined into one file. It is obvious that this number in all cases is higher than the number in any single source. It is not visible in this table that the data from the various sources are not identical. One of the tasks for the creation of the final database was to develop a method to decide which data are most probably the "correct" ones.

Fig. 1: Geographical positions of all available ionosonde stations

Most of the data was originally obtained from manually scaled ionograms according to the methods described in the "Ursi Ionogram Interpretation Handbook"

http://www.ips.gov.au/IPSHosted/INAG/uag_23a/UAG_23A_indexed.pdf

An increasing number of data, however, now comes from autoscaled (digital) ionograms. The problems and differences by the two methods have been discussed elsewhere in the literature. In this present report, which deals only with monthly medians, the differences of the two methods are probably very small and will be neglected.

The following tasks were performed in order to create the final database of all available monthly median foF2 and M(3000)F2:

- a) Rearrange the data into UT format
- b) Develop a method to decide which data are correct, if the databases show different data for the same station and hour.
- c) Delete data which are obviously wrong.

MON	ATSMITTE	LWERTE	E : f	of2(0	1) f	uer Ju	ulius	ru																	
MON	JAHR	0	1	2	3	4	5	6	7	8	9	105	T.ZEI 11	T 12	13	14	15	16	17	18	19	20	21	22	23
2 3 4 5 6 7 8 9 10 11	1957 1957 1957 1957 1957 1957 1957 1957	C 58 71 77 61 66 60 58 42	C C 59 70 74 66 57 63 56 55 38	C C 58 66 72 64 55 60 56 54 38	C C 52 68 59 53 53 53 53 53 53 53 53 53 53 53 53 53	C C 53 62 59 46 50 49 36	C C 57 67 71 62 54 47 46 35	C C 55 71 72 67 63 56 51 41 C	C C 66 78 75 71 68 77 57 57 35	C C 74 75 76 76 72 82 106 99 68	C C 94 77 79 81 82 91 121 130 102	C C 100 79 78 77 82 99 135 143 139	C C 109 78 76 79 84 99 135 145 150	C C 108 84 76 78 85 104 135 150 C	C C 108 83 75 78 82 98 134 147 151	C C 108 84 76 77 97 133 145 150	C C 104 84 75 76 79 96 124 140 142	C C 103 82 73 75 78 88 124 138 134	C C 104 81 75 75 80 96 121 126 106	C C C 97 81 75 80 96 C 106 C	C C C 95 83 76 78 77 96 88 C	C C 82 80 76 76 86 C 74 C	C C 74 76 76 69 78 75 66 52	C C 75 78 66 70 69 60 47	C C 62 74 77 69 63 58 44
2 3 4 5 6 7 8 9 10 11	1958 1958 1958 1958 1958 1958 1958 1958	45 44 54 66 72 77 73 69 65 66 49 38	44 54 65 68 70 67 66 63 65 48 38	42 51 60 68 69 63 61 60 59 47 35	40 42 50 64 68 58 57 56 43 34	38 39 46 57 64 70 59 54 53 55 42 35	38 32 54 66 72 60 59 53 54 41 35	39 36 50 65 71 66 64 55 38 33	37 52 76 75 73 70 69 74 78 54 55	70 78 79 85 81 74 74 75 80 100 86 63	106 101 87 90 81 73 76 79 87 123 125 103	133 113 101 95 86 73 75 83 93 134 140 118	145 124 108 96 84 77 77 86 96 136 151 131	148 126 124 97 83 76 76 87 98 140 150 135	150 133 123 99 84 74 75 83 105 139 149 137	145 134 121 103 86 75 76 81 106 138 146 133	140 133 117 100 87 73 74 80 102 136 143 125	133 128 114 103 86 74 75 80 100 131 134 117	118 119 113 98 88 75 75 80 101 124 123 99	98 101 108 98 90 78 76 82 102 116 97 74	78 79 96 93 91 78 76 84 98 101 83 58	63 66 83 92 89 78 77 83 86 87 65 49	58 56 72 83 86 77 78 80 77 55 43	49 48 62 77 78 77 75 72 74 50 42	47 58 71 78 76 72 70 69 47 38
2 3 4 5 6 7 8 9 10 11	1959 1959 1959 1959 1959 1959 1959 1959	41 46 65 72 75 68 61 53 48 38 28	39 41 62 68 75 64 58 51 47 37 28	35 38 61 59 64 69 62 54 49 45 34 27	32 38 55 57 60 68 55 51 46 43 31 27	32 35 51 60 68 43 38 29 27	33 31 46 52 65 73 59 54 41 36 28 28	33 34 52 62 71 77 60 61 47 39 29 26	33 48 71 67 76 67 68 57 58 38 27	67 74 82 79 82 79 60 70 63 76 67 50	105 97 89 87 85 81 70 75 70 87 86 78	125 115 104 93 89 81 72 78 72 102 105 98	136 128 113 101 88 80 70 82 77 109 118 110	141 132 116 105 88 80 70 78 81 114 118 113	142 132 119 102 86 76 77 82 115 117 113	141 130 120 101 87 76 68 77 85 113 117 118	132 127 117 99 76 69 78 84 110 115 103	126 123 116 99 86 75 71 79 84 107 101 93	107 115 114 96 87 77 71 78 84 100 87 80	85 98 109 96 74 72 79 88 89 71 56	69 83 98 93 78 72 83 84 76 58 42	59 88 86 85 77 82 80 69 46 35	51 58 77 82 79 75 79 69 58 38 31	45 51 68 73 79 75 75 59 53 37 31	44 50 62 68 73 78 71 68 55 51 38 28

Table 1: Sample of data structure by Bremer

Time is given as UT+00 YYYYMM CC V 00 01 02 195707 00 m 7 06 7 66 195707 00 c 18 21 21 195707 00 q 195707 00 q 195707 00 q 195707 00 q 195705 00 m 60 59 56 195708 00 m 60 59 56 195708 00 c 17 25 22 195708 00 q 195708 00 d 195708 0 77 24 76 22 79 21 75 27 75 26 64 26 71 24 79 23 76 24 78 25 75 25 78 22 77 20 79 15 61 21 62 22 68 26 82 24 81 22 78 16 71 18 47 20 55 23 72 18 53 22 62 25 69 23 80 25 81 22 78 20 80 17 69 15 65 13 66 21 09 10 3 80 82 .8 22 26 15 16 17 78 77 80 5 27 27 25 96 23 92 18 70 23 95 19 87 16 76 18 71 18 65 15 08 09 86 93 3 19 20 10 11 12 13 14 15 16 95 99 102 100 95 96 92 0 18 24 25 24 25 26 22 75 11 60 16 $\begin{smallmatrix} 07 & 08 & 09 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 77 \\ 777 & 102 & 127 & 1116 & 135 & 131 & 1117 & 114 & 117 & 18 & 83 \\ 6 & 23 & 14 & 9 & 13 & 11 & 15 & 14 & 8 & 10 & 12 & 11 & 4 & 7 & 10 \\ \end{smallmatrix}$ 53 18 $\begin{smallmatrix} 07 & 08 & 09 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 \\ 58 & 100 & 130 & 142 & 145 & 145 & 148 & 146 & 139 & 138 & 126 & 108 & 88 & 74 & 65 \\ 4 & 17 & 18 & 15 & 14 & 11 & 11 & 10 & 12 & 10 & 11 & 14 & 14 & 15 & 17 & 9 & 10 \\ \end{smallmatrix}$

Table 2: Sample of data structure from WDC Chilton

 031800015840
 44
 99
 28
 99
 39
 99
 37
 99
 70
 99
 16
 99
 150
 99
 145
 99
 30
 99
 25
 99
 25
 99
 25
 99
 25
 99
 150
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16
 99
 16</

Table 3: Sample of data structure from WDC Sydney

.

ypF2	
dfs1 , dfs2 , dfs3 , dfs4 , f1MUF, f2MUF, hdF2, hpF2, ypF2 25 , 28 , 31 , 37 ,	
hdF2,	
ZMUF	
IMUF.f	
Jf 54 , f	
all 11 11 11 11 11 11 11 11 11 11 11 11 1	
dfs2 ,0	
25 25 1	
471 38 X 39 X 30 X 30 X 37 X 37 X 37 X 37 X 37 X 37 X 37 X 37	48 X, 36 X, 33 X, 33 X, 30 X,
M3F2 342 342 329 355 355 355 355 355 355 355 355 355 35	2443 348 33541 A, 3335 3335 294
fxF2 33 33 33 55 55 56 56 56 57 57 58 56 57 57 57 58 56 57 57 57 57 57 57 57 57 57 57 57 57 57	A
for 30 50 50 50 50 50 50 50 50 50 50 50 50 50	AU
h F2 2334 2272 2280 2272 2280	540 540
h'F 216 278 278 278 278 282 282 282 282 282 282	
foF1 ,M3F1 M3F1,M3F1 348UL 389UL 392UL 382UL 392UL 382UL 445UL 365UL 428 371	5320L
	33 30 23 17 17 28 17 12 13 13 13 12 12
Түреs 1941 состания 1941 состания 1941 состания 1941 состания 1946 сост	1222244020
	986 986 986 986 986 986 986 986 986 986
foes 14688 14468 1468 1	201, 130 311, 112 311, 112 311, 112 412, 116 412, 106 2014, 106 2014, 94 19, 94
h 1111 1111 1111 1111 1111 1111 1111 1	106 A.
foE 176 2266 296 292 29204	260 260 A
fm: 11224444 11244444444444444444444444444	2211149mm∞
# 0K426,20090101000000 0K426,200901010100000 0K426,20090101020000 0K426,20090101030000 0K426,20090101060000 0K426,20090101060000 0K426,20090101100000 0K426,20090101100000 0K426,200901011100000 0K426,200901011100000 0K426,200901011100000 0K426,20090101130000 0K426,20090101130000 0K426,20090101130000	04426, 20090101120000 0426, 20090101160000 0426, 20090101170000 0426, 20090101190000 0426, 20090101190000 0426, 20090101210000 04426, 20090101210000 04426, 20090101220000 04426, 20090101230000

Table 4: Data from WDC Tokyo

	USRUH/			24	2	4	JRO					. 4MA				IXED 24	2.	SP3 4 24		24	24	-		24	24	24	24	24	24	24	24
1980	5 31 24 24		24	24	24	4 .	24	24	24	24	24	24	24	•	24	24	24	4 24	24	24	24	2	4	24	24	24	24	24	24	24	24
24				24	le.	'F2		£.			000	-1		le.	'F			foE		h ! r		-			4	hre		h ! r			
	foF2	MBU	00F2		n	FZ		10	DF1	MB	000	FI		n	F			IOE		h'E			OES			bES		LI F	5	Types	ES
0	fmin		0.01	-		1	0.4				~	0.1	-	~		0.0			1 0	1		-									
	1 MHz		0.01	-	1.0	KM	0.0	DT I	٩HZ		0.	10	1.	0	кm	0.0	ΤI	MHZ	1.0	KM	0	.1	MHZ	(0.1	MHZ		L.0 k	cm		
	1 MHZ		2022																												
	410131																														
	0 10000																														
	021000																														
	0170000																														
	0130000																														
	0 90000																														
	0 50000																														
	0 10000																														
	021000																														
	0170000																														
	0130000																														
	0 90000																														
	0 50000																														
	0 10000																														
	021000																														
	0170000																														
	0130000																														
	0 90000																														
	0 50000																														
	0 10000																														
20000	0210000	02200	00230	0000	00	000	1000	00 2	2000	0 30	000	400	00 !	500	00	6000	0	70000	8000	0 9	0000	100	000	110	0001	2000	013	00001	400	00150	000
	0170000																														
12000	0130000	01400	00150	00001	L60	000	17000	001	8000	0190	000	2000	0021	100	002	2000	02	30000	0000	0 1	0000	20	000	30	000	4000	0 50	0000	600	00 70	000
8000	0 90000	01000	00110	00001	L20	000	13000	0014	1000	0150	000	1600	0017	700	001	8000	01	900002	0000	021	0000	220	000	230	000	0000	0 10	0000	200	00 30	000
4000	0 50000	600	00 70	0000	80	000	9000	001	0000	0110	000	1200	001	300	001	4000	01	500001	6000	017	0000	180	000	190	0002	20000	021	00002	200	00230	000
0000	0 10000	200	00 30	0000	40	000	5000	00 (5000	0 70	000	800	00 9	900	001	0000	01:	100001	2000	013	0000	140	000	150	0001	6000	017(00001	800	00190	000
20000	0210000	2200	00230	0000	00	000	1000	00 2	2000	0 30	000	400	00 !	500	00	6000	0	70000	8000	0 9	0000	100	000	110	0001	2000	013	00001	400	00150	000
16000	0170000	01800	0019	00002	200	0002	21000	0022	2000	0230	000	000	00 1	00	00	2000	0	30000	4000	0 5	0000	60	000	70	000	8000	0 90	00001	000	00110	0000
12000	0130000	01400	0015	00001	L60	000	17000	001	8000	0190	000	2000	0021	100	002	2000	02	30000	0000	0 1	0000	20	000	30	000	4000	0 50	0000	600	00 70	000

Table 5: Sample data from Juliusruh in URSI format

39	39	37	38	37	35	35	41	74	91	103	109	97	91	96	93	88	75	58	52	43	38	39	39
25	24	24	24	24	24	24	24	24	24	24	23	23	24	24	24	25	25	25	25	25	25	25	25
45	47	47	46	46	44	43	53	88	104	113	116	119	116	114	114	109	103	91	72	63	55	47	47
29	29	29	29	29	29	29	29	29	28	29	29	29	29	29	29	29	29	29	29	29	29	29	29
73	72	70	69	66	61	64	87	106	120	127	131	132	132	128	127	124	120	114	103	90	85	77	73
31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31	31
79	76	75	72	67	64	74	84	90	101	111	118	122	122	121	121	119	115	112	106	95	88	85	81
30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30	30
78		76	70	65	64	69	75	81	83			99	100	101	100	99			96	95	88	82	80
31	30	31	29	29	30	30	31	31	31		31	31	31	30	30	31	31	31	31	31	31	31	31
79	76	74	68	66	69	79	83	87	90	90	90	94	95	92	90	88	84	85	89	93	88	87	83
27	27	27	27	27	27	26	26	25	26	26	28	27	27	27	28	27		27	26	26	28	26	26
80	78	75	72	66	66	76	83	85	85		89		88	89	87			83	84	86	84	82	82
30	30	30	30	30	30	30	30	29	29	28	28	29	30	29	30	31	31	31	31	31	31	31	31
69	66	65	64	58	55	68	78	81	84					91	94	93	92	91	92	87	77	73	70
31	31	31	31	30	30	30	30	30	29	30	30	31	31	31	31	31	31	30	30	31	31	31	31
58	56	55	54	50	49	56	74	82	85		94	99	102	102	100	100	104	98	88	77	70	66	61
30	30	30	30	30	30	30	30	30	30	30	29	29	30	30	30	30	30	30	30	30	30	30	30
51	51	50	48	46	43	44	76	102	118	119	126	127	125	123	126	122	113	96	84	68	57	54	52
24	24	24	24	24	24	24	24	26	25	25	24	25	25	24	24	24	24	24	24	24	24	24	24
46	47	47	48	43	41	40	62	95	111	119	127	126	125	125	123	116	97	81	69	59	49	44	44
30	30	30		30	30		30	30	30	30	30	30	30	30	30	30		30	30	30	30	30	30
38	37		30		40	30		87									30						
		39	39	38		38	46		114	118	121	114	113	112	109	101	80	68	54	42	35	36	36
31	31	31	31	31	31	31	31	31	30	31	31	31	31	31	31	31	31	31	31	31	30	30	31

 Table 6: Sample data from Rome

93,81	91,65	84,89	83,19	81,74	79,06	88,69	104,05	112,00	120,50
100,00	98,00	93,50	87,50	84,74	90,00	97,25	103,00	106,00	114,63
98,00	96,00	91,00	86,50	84,50	87,50	97,50	105,50	110,00	114,00
80,00	79,00	74,00	66,50	64,00	60,00	71,00	80,00	90,00	90,00
62,50	62,50	58,50	51,00	49,83	51,00	61,50	67,50	64,00	71,50
62,33	63,75	57,25	53,00	46,00	47,50	57,50	62,50	65,00	66,83
56,50	53,33	49,00	45,75	41,75	44,30	54,00	62,00	56,00	58,50
59,75	51,25	54,33	51,50	45,58	49,00	59,50	68,00	62,50	60,50
62,50	66,63	58,94	61,19	49,65	48,08	58,75	65,00	67,00	69,00
89,50	86,50	83,50	74,00	70,50	70,00	83,00	90,00	92,00	90,50
93,67	94,00	87,60	81,20	79,82	83,00	87,50	98,00	104,00	109,00
90,25	89,00	86,00	80,00	75,00	79,75	86,25	90,50	94,25	97,25
95,00	94,00	86,00	78,75	76,50	77,00	82,50	88,75	96,50	103,00
91,00	86,50	79,00	71,50	67,00	70,00	79,50	84,50	93,00	103,00
76,17	77,00	71,67	67,00	65,00	65,75	77,00	80,75	84,50	87,50
74,38	72,00	69,25	56,75	56,00	56,25	65,00	73,00	77,00	83,00
65,50	59,50	57,50	59,12	52,00	45,63	57,00	64,50	63,50	65,00
64,00	52,50	49,75	48,00	43,20	44,00	53,00	57,00	60,50	68,92
58,17	52,90	49,61	42,42	38,67	36,83	49,86	54,39	58,00	53,40
57,00	62,00	62,00	59,00	57,00	55,25	53,83	49,00	46,00	42,00
77,17	78,00	70,50	62,25	56,00	53,17	69,00	73,00	70,00	79,00
97,50	97,00	93,50	86,00	81,50	88,00	96,00	101,50	105,00	108,00
98,00	98,00	91,50	86,50	84,50	86,00	95,50	102,25	104,00	108,00

Table 7: Sample data structure from Concepcion

#Spidr data output file in ASCII format created at 2009-10-11 11:44#GMT time is used###-. 0 14.60 "U" "S'1958-09-01 21:00 14.80 "U" "S'1958-09-01 22:00 13.60 "U" "I "S'1958-09-03 01:00 14.30 "" "S'1958-09-03 02:00 14.00 "" "1958-09-03 03 4 05:00 11.50 "" "1958-09-04 06:00 10.20 "" "1958-09-04 07:00 8.20 " " "H'1958-09-05 10:00 9.80 "U" "F'1958-09-05 11:00 14.80 "U" "R'1958-09-07 " "C'1958-09-06 14:00 14.50 "U" "R'1958-09-05 11:00 14.80 "U" "R'1958-09-07 " "1958-09-07 18:00 9999.00 "" "C'1958-09-07 19:00 9999.00 " "C'1958-09-07 " "1958-09-07 18:00 9999.00 "" "C'1958-09-07 19:00 9999.00 " "C'1958-09-07 " "S'1958-09-08 22:00 14.60 "U" "S'1958-09-08 23:00 14.20 "U" "S'1958-09-07 " "S'1958-09-10 02:00 9999.00 " "C'1958-09-11 07:00 9999.00 " "C' 8:30 " "1958-09-12 10:00 11.50 " "1958-09-12 11:00 12.40 "" " "R'1958-09-13 14:00 13.40 "U" "R'1958-09-13 15:00 13.20 "U" "R'1958-09-13 16:(58-09-14 18:00 9999.00 " "C'1958-09-14 19:00 10.80 " "1958-09-17 04:00 9999.00 1 20:00 9999.00 " "C'1958-09-17 03:00 9999.00 " "F'1958-09-17 04:00 9999.00 " "551958-09-18 06:00 9999.00 " "C'1958-09-19 11:00 9999.00 " "C'1958-09-19 1: 22:00 11.40 "D" "S'1958-09-17 03:00 9999.00 "" "F'1958-09-17 04:00 9999.00 " "58-09-18 06:00 9999.00 " "C'1958-09-18 07:00 6.80 " " "1958-09-18 08:00 " "1958-09-19 10:00 9999.00 " "C'1958-09-11 10:00 9999.00 " " "F'1958-09-19 1: " "C'1958-09-20 14:00 9999.00 " "C'1958-09-21 19:00 14.70 "" "1958-09-19 1: " "C'1958-09-20 14:00 9999.00 " "C'1958-09-21 19:00 14.70 "" "1958-09-21 : 58-09-22 22:00 13.80 "" S'1958-09-22 12:00 14.00 "U" "R'1958-09-24 04:00 15.50 " " "1958-09-25 07:00 12.20 "" "1958-09-21 19:00 14.70 "" "1958-09-26 12:00 14 4.02:00 9999.00 "" "C'1958-09-26 12:00 14.60 "U" "R'1958-09-26 13:00 14 4.50 "U" "R'1958-09-27 16:00 13.00 "D" "R'1958-09-27 17:00 14.70 "" "1958-09-26 12:00 0:00 9999.00 "" "C'1958-09-26 22:00 14.60 "U" "R'1958-09-26 13:00 14 4.40 "" "1958-09-26 12:00 14.60 "U" "R'1958-09-26 12:00 14.60 "U" "R'1958-09-26 12:00 0:00 9999.00 "" "C'1958-09-30 01:00 14.60 "U" "R'1958-09-28 22:00

Table 8: sample data from SPIDR

Station Juliusruh/Rugen Mon Year 00 01 02	Lat. Long. Code Time Parameter 54.6 13.4 JR055 UT foF2 (0.1) 03 04 05 06 07 08 09 10 11 12 13	Source Station+Bremer+IPS 14 15 16 17 18 19 20 21 22 23
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	140 138 126 106 87 72 63 60 57 58
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37 36 35 51 78 99 116 121 126 132 132 37 36 44 62 79 87 100 108 122 121 121 35 54 65 76 84 90 92 97 97 98 100 63 67 71 74 81 81 86 84 96 84 86 70 71 72 74 73 73 74 76 74 75 58 60 66 70 73 76 76 76 76 53 59 66 68 74 80 87 88 81 53 53 64 74 80 85 93 97 98 106 104 53 53 64 74 80 85 93 97 98 106 <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 9: Proposed format for foF2 and M(3000)F2 data

Station	Country	URSI	Lat.	Long.	foF2	M3000
A dela	uca alaska	Code	F1 0	176 6	av. data	av. data
Adak Ahmedabad	USA, Alaska India	AD651 AH223	23.0		1945-1965 1955-1988	
Akita	Japan	AK539	39.7		1947-1993	
Alert	Canada	ALJ82	82.6		1957-1958	0- 0
Alice Springs	Australia	AL 52M	-23.4	133.5	1985-1985	1985-1985
Alma Ata	Kazakhstan	AA343	43.2		1945-1989	
Amderma	Russia	AM269			1989-1991	
Anchorage	USA, Alaska Russia	AN761 AZ163			1949-1965 1969-1993	
Archangelsk Arctica	Arctica	XG082	82.3		1957-1989	0- 0
Argentia	Canada	AF 149			1987-1994	
Argentine Is	Antarctica		-65.2	-64.3	1952-1995	1952-1995
Arƙhangelsk	Russia	AZ163	64.6		1969-1993	
Ascension Is	St. Helena	A500Q	-7.9		2001-2009	
Ashkhabad	Turkmenistan	A5237	37.9 38.0		1948-2006	
Athens Auckland	Greece New Zealand	AT138	-37.0		1961-2009 1967-1978	
Baker Lake	Canada	BL964	64.2		1949-1959	
Bangkok	Thailand	BK314	13.4		1963-1981	
Bangui	Centr. Afr. Rep.	BI104	4.2		1958-1964	
Barrow	USA, Alaska	BW771			1949-1965	
Baton Rouge	USA	04930	30.5		1943-1953	
Bear Lake Beijing	USA China	BL841 BP440	39.5		2003-2006 1976-2008	0- 0
Bekescsaba	Hungary	BH148	46.7		1964-1990	
Beograd	Serbia	BE145	44.8		1958-1993	
Bermuda	Bermuda	BJJ32	32.4	-64.7	1988-1999	1988-1999
Biak	Indonesia	BX50J	-1.2		1994-1994	
Bogota	Colombia	BGJ05	4.5		1957-1967	
Bombay Boston	India USA	BM219 56J43	19.0 42.4		1945-1981 1945-1951	
Boulder	USA	BC840			1958-2009	
Brisbane	Australia	BR52P			1943-2009	
Budapest	Hungary	BU147	47.4		1956-1959	
Buenos Aires	Argentina		-34.5		1950-1985	
Bunia Bund Station	Congo	BN102	1.3		1957-1960	
Byrd Station Calcutta	Antarctica India	CU322	23.0		1957-1967 1957-1976	
Camden	Australia		-34.0		1980-2009	
Campbell Is	Nes Zealand	CI65K			1944-1985	
Canberra	Australia	CB53N	-35.3	149.0	1941-2009	1944-2009
Cape Hallett	Antarctica	HT67K			1957-1964	
Cape Kennedy	USA	CC929	28.4		1958-1991	
Cape Schmidt	Russia Australia	CE669	68.8 -11.0		1960-1993 1944-1946	1960-1993
Cape York Capetown	South Africa	CT13M			1944-1992	
Casablanca	Morocco	CA033	33.4		1951-1958	
Casey	Antarctica	CW460	-66.3	110.5	1957-2009	1957-2009
Chiclayo	Peru	CY90P	-6.8		1957-1958	
Chilton	UK	RL052	51.6		1993-2009	
Chita	Russia China	CX452 09429	52.0 29.5		1946-1963	
Chongqing Christchurch	New Zealand	GH64L			1978-2008 1941-2009	
Christmas Is	Kiribati	08701			1945-1945	0- 0
Churchill	Canada	CH958			1943-1996	
Clyde River	Canada	CRJ70			1943-1958	
COCOS IS	Australia	CS31K			1961-2009	
College	USA, Alaska	C0764				1944-2009
Concepcion Dakar	Chile Senegal	CPJ30 DKA14			1957-1991 1949-1993	
Darwin	Australia	DW41K			1982-2009	
Davis	Australia	DV36Q			1985-2001	
De Bilt	Belgium	DT053	52.1	5.2	1949-1983	1949-1983
Deception	Antarctica	DE J6L	-62.6	-60.4	1952-1963	1952-1963

Table 10: List of all available ionosonde stations

Station	URSI Code	Bremer count	Chilton count	IP5 count	SPIDR	Station count	Combined count
Adak	AD651	0	2473	5524	0	0	5524
Ahmedabad	AH223	6619	6471	8692	ő	0	8863
Akita	AK539	8981	9005	13107	ŏ	5783	13121
Alert	ALJ82	0	0	0	408	0	408
Alice Springs	AL 52M	0	0	144	0	0	144
Alma Ata	AA343	9096	9083	12279	0	0	12567
Amderma	AM269	0	579	201	0	0	614
Anchorage	AN761	0	1581	4626	0	0	4626
Archangelsk	AZ163	7001	6661	696	0	0	7001
Arctica	XG082	8208	1025	0	0	0	8208
Argentia Argentine Is	AFJ49 AIJ6N	0 9120	1825 10060	0 7580	0	0	1825 12479
Arkhangelsk	AZ163	7001	6661	696	ŏ	ŏ	7001
Ascension Is	A500Q	0	0	0	1617	ŏ	1617
Ashkhabad	A5237	9908	10232	10804	527	Ō	13911
Athens	AT138	0	3414	2086	404	0	4985
Auckland	AU63P	0	1932	3401	0	0	3425
Baker Lake	BL964	0	0	2904	0	0	2904
Bangkok	BK314	0	0	2932	0	0	2932
Bangui	BI104 BW771	0	0 1133	678 4088	0	0	678 4088
Barrow Baton Rouge	04930	ŏ	1133	2893	ő	ŏ	2893
Bear Lake	BL841	ŏ	ŏ	0	764	ŏ	764
Beijing	BP440	Ō	1331	7915	0	Ō	8314
Bekescsaba	BH148	5256	5073	5677	0	0	5712
Beograd	BE145	6036	2712	3798	0	0	8813
Bermuda	BJJ32	0	1076	0	282	0	1334
Biak	BX501	0	0	78	0	0	78
Bogota Bombay	BGJ05 BM219	1865	1750	2026 5871	0	0	2058 6426
Boston	56343	1805	ŏ	1806	ő	ŏ	1806
Boulder	BC840	10679	11678	6163	1946	ŏ	13660
Brisbane	BR52P	10175	10524	15595	0	Õ	15623
Budapest	BU147	0	692	1117	0	0	1117
Buenos Aires	BAJ3M	0	243	7506	0	0	7506
Bunia	BN102	0	0	693	0	0	693
Byrd Station Calcutta	BD88_ CU322	0 2605	716	2254	0	0	2308 2679
Camden	CN53L	3480	3681	1127	2998	ő	6726
Campbell Is	CI65K	4603	3688	10483	0	ŏ	10587
Canberra	CB53N	11518	11907	19100	440	Ő	19394
Cape Hallett	HT67K	0	9	1877	0	0	1877
Cape Kennedy	CC929	0	1519	0	0	0	1519
Cape Schmidt	CE669	0	1864	1216	0	0	2099
Cape York	07513	0 6381	0 6586	376	0	0	376
Capetown Casablanca	CT13M CA033	0381	0800	10193 1795	0	0	10310 1795
Casey	CW460	5178	2560	1/ 55	3376	ŏ	8434
Chiclayo	CY90P	0	322	ŏ	0	Ő	322
Chilton	RL052	0	3534	0	0	0	3534
Chita	CX452	0	1578	3150	0	0	3150
Chongqing	09429	0	1235	8059	0	0	8059
Christchurch	GH64L	8112	8009	16889	693	0	17455
Christmas Is Churchill	08701	12712	0	138	0	0	138
Clyde River	CH958 CRJ70	12712 0	8638 0	13492 2228	0	0	14406 2228
COCOS IS	CS31K	0	216	3620	0	0	3620
College	C0764	4845	3923	7303	2896	ŏ	12755
Concepcion	CPJ30	5520	5285	0	0	9792	9864
Dakar	DKA14	7314	5085	10914	0	0	11549
Darwin	DW41K	0	3016	7280	0	0	7280
Davis	DV36Q	0	0	4201	0	0	4201
De Bilt	DT053	6331	3648	9392 1741	0	0	9456 1741
Deception Delhi	DEJ6L DH328	0	0 4664	9499	0	0	9698
Dikson	DI373	3546	3464	4177	754	ŏ	7298
		1111				, in the second s	

Table 11: Number of data available in the various sources

After completing the data collection, data with wrong time stamps had to be rearranged, obviously wrong data had to be eliminated and a method had to be developed to decide which data from the different sources are assumed to be correct, if the sources show different values for the same station and hour. The format of the final database is shown in **Table 9**. The final database contains two data files (foF2 and M(3000)F2, respectively) for each ionosonde station. The database is included on the accompanying CD.

3. Creating the database using all available data

During the data collection it became obvious, that a frequent problem was that the time stamp (UT or local time) was not correct in many cases. In principle it is not difficult to check, as particularly the rise in foF2 with sunrise is quite pronounced and can be used to check the time stamp of the data. This can be performed either manually or simply by comparing the measurements with a prediction. This second method was chosen here in order to "synchronize" the data. As explained above, the resulting data base is strictly in UT (**Table 9**).

Several cases were found where such a synchronization was impossible. This may be due to wrong station names or wrong months. In these cases it was not possible to correct the data and they were simply removed (omitted, i.e. not included in the database). Altogether only about 850 months have been omitted, which is about 1% of the total hourly values.

Station	URSI	Source	Years	Para-	Reason	Action taken
	Code			meter		
Argentine Is	AIJ6N	Bremer	1990-1995	foF2	wrong data	removed
Argentine Is	AIJ6N	Chilton	1957-1959	foF2	wrong data	removed
Argentine Is	AIJ6N	Chilton	03/1989-	foF2 +	Local time instead of	shifted by 4
			12/1995	M3000	UT	hours
Ashkhabad	AS237	Chilton	11/1987-	M3000	wrong data	removed
			04/1988			
Campbell Is	CI65K	Bremer	1970	foF2	wrong data	removed
Campbell Is	CI65K	Chilton	1970	foF2	wrong data	removed
Cape Kennedy	CC929	Chilton	11/1987-	M3000	wrong data	removed
			12/1988			
Cape Schmidt	CE669	Chilton	11/1987-	M3000	wrong data	removed
			04/1988			
Capetown	CT13M	Bremer +	06/1988-	foF2 +	wrong data	removed, IPS
		Chilton	08/1988	M3000		data okay
Dyess AFB	DS932	Chilton	12/2003 +	M3000	wrong data	removed
			11/2004 +			
			09/2005			
Dikson	DI373	Chilton	11+12/1987	M3000	wrong data	removed
El Arenosillo	EA036	Chilton	03, 05, 09-	foF2 +	wrong data	removed
			11/1999	M3000		
Godhavn	GOJ69	Chilton	02/1975	M3000	wrong data	removed
Gorky	GK156	Chilton	1990-1993	foF2	wrong data	removed
Goosebay	GSJ53	Bremer +	11/1987-	M3000	wrong data	removed
		Chilton	04/1988			
Grahamstown	GR13L	Bremer +	09-12/1976	M3000	wrong data	removed
		Chilton				
Hanscom AFB	HAJ43	Boulder	1998-1999	foF2	medians wrongly coded	recalculated

T 1 1	10100		06.00	6 52	1	1 100
Johannesburg	JO120	Bremer + Chilton	06-08 + 10/1988	foF2 + M3000	wrong data	removed, IPS data okay
Kaliningrad	KL154	Bremer	01/1990	M3000	wrong data	removed
Karaganda	KR250	Bremer +	04/1978-	M3000	wrong data	removed
		Chilton	07/1979		8	
La Reunion	LR22J	Chilton	1989	foF2	wrong data	removed
Leningrad	LD160	Chilton	09/1998	M3000	wrong data	removed
Lycksele	Ly164	SPIDR	04/2000	M3000	wrong data	removed
Macquarie Is	MQ55M	IPS	1958	foF2	wrong data	removed
Macquarie Is	MQ55M	Bremer	1954-1957	foF2	LT instead of UT	shifted
Macquarie Is	MQ55M	Chilton	1954-1957	foF2	LT instead of UT	shifted
Macquarie Is	MQ55M	Chilton	08/1958	foF2 + M3000	wrong data	removed
Manila	MN414	Bremer	1991-1993	foF2	LT instead of UT	shifted
Manila	MN414	Chilton	1991-1993	foF2	LT instead of UT	shifted
Miedzeszyn	MZ152	Bremer	1976-1985	foF2	LT instead of UT	shifted
Millstone Hill	MH345	Chilton	09/2003 +	M3000	wrong data	removed
Willistone Tim	1113 13	Chinton	09/2004	113000	wrong data	Temoved
Murmansk	MM168	Chilton	11/1987-	M3000	wrong data	removed
	1.11.1100	Chillion	04/1988	1120000	Wieng unin	101110 / 00
Nicosia	NC136	Chilton	11/1987-	M3000	wrong data	removed
			04/1988		ε	
Ottawa	OT945	IPS	1981	foF2	wrong data	removed
Port Stanley	PSJ5J	Chilton	1967-1995	foF2	LT instead of UT	shifted
Resolute Bay	RB974	IPS	1-12/1981	foF2 +	wrong data	removed,
				M3000		Bremer +
						Chilton okay
Rome	RO041	IPS	01-04/1951	M3000	wrong data	removed
Rome	RO041	Bremer	1971-1972	foF2	wrong data	removed
Rome	RO041	Bremer	1958-1992	foF2	LT instead of UT	shifted (1h)
Rome	RO041	Bremer	1993-1994	foF2	1 h diff. in addition to LT	shifted (2h)
Rome	RO041	Bremer	1995-1998	foF2	LT instead of UT	shifted (1h)
Rome	RO041	Chilton	1971-1972	foF2	wrong data	removed
Rome	RO041	Chilton	1958-1992	foF2	LT instead of UT	shifted (1h)
Rome	RO041	Chilton	1993-1994	foF2	1 h diff. in addition to LT	shifted (2h)
Rome	RO041	Chilton	1995-1998	foF2	LT instead of UT	shifted (1h)
Rostov	RV149	IPS	10-12/1957	foF2 +	wrong data	removed,
10000			10 12 1701	M3000		Bremer +
						Chilton okay
Syowa Base	SW16R	Station	1959-2009	foF2	wrong data	removed
Tahiti	TT71P	Bremer	1989	foF2	neither LT or UT	shifted (+10h)
Tahiti	TT71P	Chilton	1989	foF2	neither LT or UT	shifted (+10h)
Tahihti	TT71P	IPS	01/1981-	foF2 +	wrong data	removed,
			12/1983	M3000	5	Bremer +
						Chilton okay
Tiksi Bay	TX471	IPS	10+11/1957	foF2 + M3000	wrong data	removed
Tucuman	TUJ20	IPS	1981-1985	foF2	wrong data	removed
Winnipeg	WI949	SPIDR	01/1950	M3000	wrong data	removed
r -0	WI949	Chilton			0	

Table 12: This table shows the modifications made to the original ionosonde data

Finally it had to be decided which data should be included in the database if there were data available from more than one source and if the data was different in the various sources. By the way, there is <u>no case</u> where data are available in all five sources for the same station, year and month (the reason for so few SPIDR data was explained in the caption to Table 8). On the other hand the decision is quite simple if data exists only in one source.

One of the reasons for the small differences in the data from different sources is the calculation of median values (as shortly explained in the caption to **Table 8**). Some stations report only the hourly measurements and do not calculate the monthly median (this we did e.g. for our station St. Peter-Ording). A calculation of the monthly median depends amongst others on the consideration of descriptive letters. If they are considered, it is quite likely that the monthly median will be slightly different compared with the monthly median calculated without taking the descriptive letters into account.

After careful consideration we chose the following procedure:

- 1 If data exists in more than one source and one of them is the station itself, this data is taken.
- 2 If data is available from two sources, but no station data, the "ranking" is taken as: IPS, Bremer, Chilton, SPIDR. This ranking is based on the assumption that the larger the database, the more reliable it is.
- 3 If data is available from 3 or 4 sources, it was checked if two (or more) had identical values and then these were taken. If all sources showed different values, step 2 was taken.

This procedure is admittedly subjective but it seems to us that it is reasonable due to the absence of more detailed justification. It should be noted that in most cases the differences in the data are only very small, as is indicated in **Table 13**. This Table shows an example of the values for Concepcion, January 1959. The values we have received from Alberto Foppiano were originally two decimals more than used in the other data sources. We have rounded this to one decimal more than used in most other sources as shown in **Table 13** and these values we called here "Original". The values called "Concepcion" are the rounded values we converted the "Original" values into in order to be of the same format as the others. Values for this same station, month and hour are available from three more sources and Table 13 shows the "combined" values in the last column calculated according to the above procedure. The reason for the differences (although quite small) in the Bremer and Chilton values are unknown, perhaps they were treated in a different way (e.g. calculation of medians, see above), perhaps they come from different sources.

UT	Original	Concepcion	Bremer	Chilton	Combined
00	95.5	96	95	93	96
01	95.0	95	94	93	95
02	94.0	94	96	93	94
03	100.0	100	96	96	100
04	104.0	104	100	99	104
05	100.0	100	100	97	100

06	98.0	98	95	93	98
07	93.5	94	88	87	94
08	87.5	88	86	87	88
09	84.7	85	86	86	85
10	90.0	90	90	90	90
11	97.3	97	95	94	97
12	103.0	103	100	102	103

Table 13: Sample treatment of data (see text above)

Table 14 shows a part of the final data file for the measurements from the Ionosonde Station Rome. The only difference in the format compared with **Table 9** is that in the second line it is indicated how many data in the final data base come from the different sources (in percent).

Station Rome Mon Year	00	01	02	Lat 41. 03		Long 12. 05		Code 0041 07		ime JT 09		amete 2 (0. 11		13		urce at (95 15	i)Bre 16	emer(17	3)IP 18	5(2) 19	20	21	22	23
1 1949 2 1949 3 1949 5 1949 6 1949 7 1949 8 1949 9 1949 9 1949 10 1949 11 1949 12 1949			C 64 70 67 61 58 53 50 43 42	C C C 66 65 60 56 52 50 41 42	C C C C C C C C C C C C C C C C C C C	C 59 74 69 75 71 60 56 48 39 40	C 76 82 75 78 71 73 71 76 60 42	C 90 85 80 74 70 75 81 77 70	C C 90 87 80 74 73 74 75 81 75	C 89 90 80 74 76 78 76 82 85 80	C 95 90 80 77 76 80 78 82 87 87	C 291 80 80 77 82 80 83 89 95			C 102 95 80 76 81 78 83 85 82	C C 80 80 75 85 77 84 77 84	C C C 78 78 76 80 78 72 75	C 100 90 80 76 78 75 79 68 67	C 90 87 77 77 78 76 70 71 60 57	C 83 80 73 73 77 74 68 58 52	C 80 80 73 75 70 64 55 46	C 77 80 73 73 67 65 60 53 40	C 77 77 73 71 67 64 61 53 46 41	C 71 78 73 73 70 62 60 58 47 40
1 1950 2 1950 3 1950 5 1950 6 1950 6 1950 8 1950 9 1950 10 1950 11 1950 12 1950			44 41 45 60 59 60 59 37 30 30 28 29	44 40 50 52 50 52 36 29 31 28 27	42 39 33 48 56 48 56 33 27 30 29 27	39 30 48 53 61 53 61 44 32 27 25 28	42 40 60 62 68 62 68 54 42 47 36 32	80 75 73 66 73 66 57 54 60 64 52	90 87 78 81 72 81 72 62 55 61 69 60	100 100 83 90 78 90 78 68 57 62 75 68	105 102 88 92 81 92 81 69 60 67 76 70	110 105 93 94 85 94 85 71 62 72 77 72	000000000000000000000000000000000000000		110 90 95 78 95 78 68 62 77 77 65	110 95 85 90 76 90 76 70 64 74 75 61	95 90 80 85 78 85 78 70 70 73 60 49	75 75 85 82 77 82 77 67 70 60 43 40	61 63 80 73 80 73 70 63 49 42 36	51 54 67 75 73 65 65 47 32 34	47 47 83 68 69 68 69 60 51 41 30 32	43 40 58 62 64 64 64 55 37 35 28 30	41 44 59 62 55 55 55 44 34 32 28 31	42 42 48 60 63 60 63 47 33 32 30 29

Table 14: Sample for two years of the Rome data in the Final Database

Table 15 shows the result of a comparison of the data contained in the various sources with the ITU predicted data. In the first two columns the station name and URSI code are shown. Columns 3 to 8 give the number of values contained in the source, the average deviation and the mean square deviation as compared with the ITU prediction. In the final column the number of values in the final database, their average and mean square deviation are given. In the final line the total count, average deviation and mean square deviations are shown.

The final database consists of about 1.6 million monthly median foF2- and slightly less M(3000)F2-data. Amazingly the average difference between the observed values and the ITU-predicted foF2-values is only 0.04 MHz with a mean square deviation of 0.81 MHz (see **Table 15**). This clearly indicates that the ITU predictions are on average almost

perfect, but the large deviation suggests that the sunspot number may not be the best parameter for the prediction of monthly values (of foF2).

Station	URSI	Bre	emer		Chi	ilton		IPS			SPI	DR		Station		Kombiniert
	Code	count	ave.	m.sq.	count	ave.	m.sq.	count a	ve.	m.sq.	count	ave.	m.sq.	count ave.	m.sq	. count ave. m.sq.
Tennent Creek	TD42M								0.7		•					167 -0.7 0.9
Terra Nova Bay	TL57N						1001		0.2	0.5					•	120 0.2 0.5
Terre Adelie	DU560	6925	-0.2	0.6	3283	-0.3	0.6		0.1	0.7	22	-0.3	0.4			10535 -0.1 0.7
Thule/Camp Tuto	THJ76							3760	0.0	0.6						3760 0.0 0.6
Thule/Qaanaaq	THJ77	3428	0.0	0.6	1025	0.2	0.5	Second Second	•		2854	0.4	0.8			6316 0.2 0.7
Tiksi Bay	TX471				2456	0.0	0.8		0.1	0.6						6179 -0.1 0.7
Tiruchirapalli	TI311	6142	-0.2	1.3	5696	-0.2	1.3	7470	0.0	0.9						8644 -0.1 1.2
Togo (Dapango)	TG011							310	0.2	0.7						310 0.2 0.7
Tomsk	TK356	10932	-0.1	0.7	10909	-0.1	0.6	14255	0.0	0.6	1550	-0.1	0.8			17472 0.0 0.7
Tortosa	EB040			•	7536	0.1	1.5	7004	0.1	0.6	1557	0.3	0.7			10805 0.1 0.7
Townsville	TV51R	12078	-0.4	0.9	10095	-0.3	0.7	16169 -	0.2	0.8	480	-0.4	0.7			16702 -0.3 0.8
Trinidad	51J10							2040	0.0	0.8						2040 0.0 0.8
Trivandrum	TM308	4217	-0.1	0.9	3715	-0.1	0.9	5001 -	0.1	0.9						5290 -0.1 1.0
Tromso DPS-4	TR169				1702	0.3	0.6	5422	0.3	0.7	1038	0.7	1.8			7951 0.3 0.7
Tsumeb	TS11R	~~~~~						3131	0.0	0.7						3131 0.0 0.7
Tucuman	TUJ2O				16	1.2	1.4	6665	0.1	1.6	822	0.4	1.1			7487 0.1 1.5
Tunguska	TZ362	6668	-0.3	0.8	6794	-0.2	0.8	3923 -	0.2	0.8	2582	-0.1	1.2			9869 -0.2 0.8
Uppsala	UP158	11464	0.0	0.7	10574	0.0	0.7	13531	0.0	0.7						13882 0.0 0.7
Ushuaia	UAJ5M							2261	0.3	1.0						2261 0.3 1.0
Vandenburg AFB	XXX01								0.3	0.6						504 0.3 0.6
Vanimo	VA50L	8294	0.1	1.2	5856	0.2	1.0	12126	0.4	1.2	452	-0.3	0.8			12689 0.3 1.2
Victoria	VI848				144	0.7	1.2									144 0.7 1.2
Vostok	VD47P				6	-0.3	0.6	2150 -	0.3	0.7						2150 -0.3 0.7
Wakkanai	WK545	9384	0.3	0.7	90 92	0.3	0.7	16951	0.3	0.7				12964 0.1	0.7	17423 0.2 0.7
Wallops Is DISS	WP937	7306	0.3	0.7	6925	0.4	0.7	4992	0.4	0.8	119	0.4	0.6			8600 0.3 0.7
Washington	WA938				3331	0.3	0.7	7911	0.2	0.6						7911 0.2 0.6
Watheroo	WT43				302	0.0	0.8	5160	0.1	0.7	1.7.					5160 0.1 0.7
Wellen	WE667	·····			1184	-0.1	0.7	770	0.0	0.7	132	-0.1	0.4			1378 -0.1 0.7
White Sands	WS832	4608	0.0	0.6	5024	0.0	0.6	7463	0.0	0.6						8136 0.0 0.6
Winnipeg	WI949	3791	0.0	0.7	4669	0.0	0.6	7375	0.0	0.7	848	0.2	0.7			8294 0.0 0.7
Woomera	WD53J							1192	0.2	0.5						1192 0.2 0.5
Yakutsk	YA462	9596	-0.2	0.7	9482	-0.1	0.7		0.1	0.7		- 2				9971 -0.1 0.7
Yamagawa	YG431	9180	-0.3	0.9	8973	-0.3	0.9	16515 -	0.3	0.9				7792 -0.6	1.0	16734 -0.4 1.0
Yellowknife	YE862					1.0	1.5									244 1.0 1.5
Yuzhno-Sakhalins	SA547	······					1202	4002	0.2	0.9			20400			4002 0.2 0.9
Zhongshan	ZS36R			0	3				1		1359	0.0	0.6	3		1359 0.0 0.6
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~																
average		816346	0.02	0.81	854108	0.05	1.01	1239501 0	.03	0.77	84452	0.28	1.11	108707-0.09	0.83	1601519 0.04 0.81

Table 15: Comparison of Final Data base foF2 values with ITU foF2 predictions

# 4. Computer program IONMW

The program "IONMW" was written particularly for viewing and accessing the measured foF2 and M(3000)F2 data collected from the various sources as well as the Final Data Base. It is possible to select a map which shows the geographical positions of all stations included in the data base. The option Graphic Years shows a display of the years for which measured data exists for each station. If any other option than Map is selected, it is possible to view the complete list of stations with their URSI codes, geographical coordinates and years where data is available from the various sources or for the combined Final Data Base (complete **Table 10**). When a station name is clicked in this list, the detailed map of all measured values for this station is displayed. Actually two windows open and it is possible to select two sources (if available) in order to compare the data. This program is the management center for all data. It contains a help file and should be easy to use.

There is a CDs which comes with this report. The data files appear twice, once in the folder Original_data or Final_database and in the IONMW program. This makes it easier to use (e.g. export) the data without using the IONMW program. The CD contains the following 8 files, resp. folders:

- 1. **Readme.txt** containing this paragraph (top 1 to 8)
- 2. Document.DOC, this present report
- 3. **Original_Data**, containing five subfolders: Bremer, Chilton, SPIDR, IPS and Station. The subfolders contain the stations' measured data, i.e. two files for each station if data exist for the two parameters. The filename is the station's 5-character URSI-code plus F2 or M3-information, e.g. AD651_F2.dat for Adak's foF2 values. The data is strictly in the format as in **Table 14**. It was not considered helpful to include the "real" original data because of their deficiencies (format, time stamp etc.).
- 4. **Final_Database** containing 497 files, i.e. 258 files for foF2 from 258 stations, and 239 files for M(3000)F2 from 239 stations. The filename is the station's 5-character URSI-code plus F2 or M3-information, e.g. AD651_F2.dat for Adak's foF2 values. The data is strictly in the format as in **Table 14**.
- 5. **Setupionmw.exe** which installs the program ionmw.exe. This program is the central access point to the original data as well as to the Final Database.
- 6. **station_list.txt** is the complete list of all ionosonde stations where data is available (actually this is the updated and completed **Table 10**). The years indicate those years where data is available but there may be large gaps which can not be seen in this table (see description of the program ionmw).
- 7. Filedescr.doc describes the data format of the database in detail.
- 8. ionabw.txt (last few lines are shown in Table 15)

## Conclusions

This comprehensive database offers the possibility to check the predictions of ionospheric models with actually measured ionospheric data on a world-wide and long-term basis. In particular it is considered useful to check if the measured data shows any long-term trend proposed in various theoretical studies, in contrast e.g. to the ITU-model which is static in long-term.

Note: This work was sponsored by ESA under contract number 21764/08/NL/LvH